3.294 \(\int \frac{1}{x^{5/2} (a+b x^2)} \, dx\)

Optimal. Leaf size=204 \[ \frac{b^{3/4} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{7/4}}-\frac{b^{3/4} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{7/4}}+\frac{b^{3/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{7/4}}-\frac{b^{3/4} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} a^{7/4}}-\frac{2}{3 a x^{3/2}} \]

[Out]

-2/(3*a*x^(3/2)) + (b^(3/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(7/4)) - (b^(3/4)*ArcTan
[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(7/4)) + (b^(3/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sq
rt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(7/4)) - (b^(3/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])
/(2*Sqrt[2]*a^(7/4))

________________________________________________________________________________________

Rubi [A]  time = 0.161096, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.533, Rules used = {325, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac{b^{3/4} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{7/4}}-\frac{b^{3/4} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{7/4}}+\frac{b^{3/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{7/4}}-\frac{b^{3/4} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} a^{7/4}}-\frac{2}{3 a x^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^(5/2)*(a + b*x^2)),x]

[Out]

-2/(3*a*x^(3/2)) + (b^(3/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(7/4)) - (b^(3/4)*ArcTan
[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(7/4)) + (b^(3/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sq
rt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(7/4)) - (b^(3/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])
/(2*Sqrt[2]*a^(7/4))

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^{5/2} \left (a+b x^2\right )} \, dx &=-\frac{2}{3 a x^{3/2}}-\frac{b \int \frac{1}{\sqrt{x} \left (a+b x^2\right )} \, dx}{a}\\ &=-\frac{2}{3 a x^{3/2}}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{a+b x^4} \, dx,x,\sqrt{x}\right )}{a}\\ &=-\frac{2}{3 a x^{3/2}}-\frac{b \operatorname{Subst}\left (\int \frac{\sqrt{a}-\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{a^{3/2}}-\frac{b \operatorname{Subst}\left (\int \frac{\sqrt{a}+\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{a^{3/2}}\\ &=-\frac{2}{3 a x^{3/2}}-\frac{\sqrt{b} \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 a^{3/2}}-\frac{\sqrt{b} \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 a^{3/2}}+\frac{b^{3/4} \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} a^{7/4}}+\frac{b^{3/4} \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} a^{7/4}}\\ &=-\frac{2}{3 a x^{3/2}}+\frac{b^{3/4} \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{7/4}}-\frac{b^{3/4} \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{7/4}}-\frac{b^{3/4} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{7/4}}+\frac{b^{3/4} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{7/4}}\\ &=-\frac{2}{3 a x^{3/2}}+\frac{b^{3/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{7/4}}-\frac{b^{3/4} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{7/4}}+\frac{b^{3/4} \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{7/4}}-\frac{b^{3/4} \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{7/4}}\\ \end{align*}

Mathematica [C]  time = 0.0058437, size = 29, normalized size = 0.14 \[ -\frac{2 \, _2F_1\left (-\frac{3}{4},1;\frac{1}{4};-\frac{b x^2}{a}\right )}{3 a x^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(5/2)*(a + b*x^2)),x]

[Out]

(-2*Hypergeometric2F1[-3/4, 1, 1/4, -((b*x^2)/a)])/(3*a*x^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 143, normalized size = 0.7 \begin{align*} -{\frac{b\sqrt{2}}{4\,{a}^{2}}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }-{\frac{b\sqrt{2}}{2\,{a}^{2}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }-{\frac{b\sqrt{2}}{2\,{a}^{2}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) }-{\frac{2}{3\,a}{x}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(5/2)/(b*x^2+a),x)

[Out]

-1/4*b/a^2*(1/b*a)^(1/4)*2^(1/2)*ln((x+(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2))/(x-(1/b*a)^(1/4)*x^(1/2)*2
^(1/2)+(1/b*a)^(1/2)))-1/2*b/a^2*(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)+1)-1/2*b/a^2*(1/b*
a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)-1)-2/3/a/x^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.37002, size = 387, normalized size = 1.9 \begin{align*} -\frac{12 \, a x^{2} \left (-\frac{b^{3}}{a^{7}}\right )^{\frac{1}{4}} \arctan \left (-\frac{a^{5} b \sqrt{x} \left (-\frac{b^{3}}{a^{7}}\right )^{\frac{3}{4}} - \sqrt{a^{4} \sqrt{-\frac{b^{3}}{a^{7}}} + b^{2} x} a^{5} \left (-\frac{b^{3}}{a^{7}}\right )^{\frac{3}{4}}}{b^{3}}\right ) + 3 \, a x^{2} \left (-\frac{b^{3}}{a^{7}}\right )^{\frac{1}{4}} \log \left (a^{2} \left (-\frac{b^{3}}{a^{7}}\right )^{\frac{1}{4}} + b \sqrt{x}\right ) - 3 \, a x^{2} \left (-\frac{b^{3}}{a^{7}}\right )^{\frac{1}{4}} \log \left (-a^{2} \left (-\frac{b^{3}}{a^{7}}\right )^{\frac{1}{4}} + b \sqrt{x}\right ) + 4 \, \sqrt{x}}{6 \, a x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

-1/6*(12*a*x^2*(-b^3/a^7)^(1/4)*arctan(-(a^5*b*sqrt(x)*(-b^3/a^7)^(3/4) - sqrt(a^4*sqrt(-b^3/a^7) + b^2*x)*a^5
*(-b^3/a^7)^(3/4))/b^3) + 3*a*x^2*(-b^3/a^7)^(1/4)*log(a^2*(-b^3/a^7)^(1/4) + b*sqrt(x)) - 3*a*x^2*(-b^3/a^7)^
(1/4)*log(-a^2*(-b^3/a^7)^(1/4) + b*sqrt(x)) + 4*sqrt(x))/(a*x^2)

________________________________________________________________________________________

Sympy [A]  time = 76.1118, size = 184, normalized size = 0.9 \begin{align*} \begin{cases} \frac{\tilde{\infty }}{x^{\frac{7}{2}}} & \text{for}\: a = 0 \wedge b = 0 \\- \frac{2}{3 a x^{\frac{3}{2}}} & \text{for}\: b = 0 \\- \frac{2}{7 b x^{\frac{7}{2}}} & \text{for}\: a = 0 \\- \frac{2}{3 a x^{\frac{3}{2}}} + \frac{\sqrt [4]{-1} \log{\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 a^{\frac{7}{4}} b^{12} \left (\frac{1}{b}\right )^{\frac{51}{4}}} - \frac{\sqrt [4]{-1} \log{\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 a^{\frac{7}{4}} b^{12} \left (\frac{1}{b}\right )^{\frac{51}{4}}} + \frac{\sqrt [4]{-1} \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{a} \sqrt [4]{\frac{1}{b}}} \right )}}{a^{\frac{7}{4}} b^{12} \left (\frac{1}{b}\right )^{\frac{51}{4}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(5/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo/x**(7/2), Eq(a, 0) & Eq(b, 0)), (-2/(3*a*x**(3/2)), Eq(b, 0)), (-2/(7*b*x**(7/2)), Eq(a, 0)), (
-2/(3*a*x**(3/2)) + (-1)**(1/4)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(7/4)*b**12*(1/b)**(51
/4)) - (-1)**(1/4)*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(7/4)*b**12*(1/b)**(51/4)) + (-1)**(
1/4)*atan((-1)**(3/4)*sqrt(x)/(a**(1/4)*(1/b)**(1/4)))/(a**(7/4)*b**12*(1/b)**(51/4)), True))

________________________________________________________________________________________

Giac [A]  time = 2.20772, size = 240, normalized size = 1.18 \begin{align*} -\frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, a^{2}} - \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, a^{2}} - \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \log \left (\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, a^{2}} + \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, a^{2}} - \frac{2}{3 \, a x^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x^2+a),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/a^2 - 1/2*sqrt(2)
*(a*b^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/a^2 - 1/4*sqrt(2)*(a*b^3)^(1
/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/a^2 + 1/4*sqrt(2)*(a*b^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(a/b
)^(1/4) + x + sqrt(a/b))/a^2 - 2/3/(a*x^(3/2))